

Storage What could possibly go wrong? Phil Grunewald

BIEE conference 21-22 Sep 2016

System value ≠ Market value

Best ≠ Best

10kWh

Should I buy a Powerwall?

Best case: Match your 3 kW_p PV Annual el. use 3 MWh All use at night (?!)

The sums: Import @12p/kWh: £360 Export @4p/kWh £120

Bottom line: Max saving: £240 per annum 10 yr NPV (r=3.6%) -£280

Operator	Strategy	Сог	ndition	Conflict
		Charge	Discharge	
End user (autonomy)	Minimise import Avoid export	High RES, low demand at home	Low RES, high demand at home	No alignment with system needs, poor grid use, higher grid cost for other users

Operator	Strategy	Cond	Conflict		
		Charge	Discharge		
End user (autonomy)	Minimise import Avoid export	High RES, low demand at home	Low RES, high demand at home	No alignment with system needs, poor grid use, higher grid cost for other users	
DNO (local)	Constrain demand to feeder capacity	Always, esp. briefly at voltage rise	When feeder constraint is reached	Low risk demands high charge level (strategic reserve)	
ΤΝΟ	Better utilisation of asset Avoid constraints	High RES, low demand in region A with storage	Low RES in A, high demand in region B without storage	Higher use of existing transmission capacity, less able to serve remote peaks	
Utility (Generator)	Improve load factor of existing plant	When SO calls for plant turn down	Low RES, high national demand	Can create artificial peak by scheduling maintenance	
System operator	Reduce cost of flexibility Displace part loaded plant	Fall in demand, rise in RES	Rise in demand, fall in RES	Operation based on rate (not quantity)	
Independent commercial operator	Trade on market volatility and distortions	Low market price	High market price	If price ≠ value storage operation can reduce common value	

SPLIT VALUE

System values: Strbac et al., Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future. The Carbon Trust

Battery costs are falling

Based on: B. Nykvist & M Nilsson, Nature Climate Change, 2015, and Malcolm McCulloch

System and Market Value

2030 High wind scenario 5 GW storage

System value: Strbac et al., 2012, Market value: Grunewald, 2013

Importance Low Medium High	Cost	Lifetime	Energy	Power	Size	Weight	Efficiency
	Lack of alternatives	High device turnover	Daily charging accepted	Steady load modest peaks	Miniaturisa- tion	Handheld devices	Avoid overheating
	Early adopter willing to pay	High device turnover	Range anxiety	Fast charging Accelerate	Space is precious	Moving mass	Economics and range
XXXXX	Competitors: gas, diesel	Reliability required	Hours, days (and longer?)	Relative to energy	Esp. if on remote sites	Not an issue	Less important with high RES

Importance Low Medium High	Cost	Lifetime	Energy	Power	Size	Weight	Efficiency
	Lack of alternatives	High device turnover	Daily charging accepted	Steady load modest peaks	Miniaturisa- tion	Handheld devices	Avoid overheating
	Early adopter willing to pay	High device turnover	Range anxiety	Fast charging Accelerate	Space is precious	Moving mass	Economics and range
XXXXX	Competitors: gas, diesel	Reliability required	Hours, days (and longer?)	Relative to energy	Esp. if on remote sites	Not an issue	Less important with high RES
Performance Low Medium High	Cost \$/kWh	Lifetime yrs	Energy /Power	Power MW	Size m ³	Weight t	Efficiency %
Li-Ion	500 (150)	3-10	2	0.001- 10	1 - 1000	0.03 300	>90

Importance Low Medium High	Cost	Lifetime	Energy	Power	Size	Weight	Efficiency
	Lack of alternatives	High device turnover	Daily charging accepted	Steady load modest peaks	Miniaturisa- tion	Handheld devices	Avoid overheating
	Early adopter willing to pay	High device turnover	Range anxiety	Fast charging Accelerate	Space is precious	Moving mass	Economics and range
***	Competitors: gas, diesel	Reliability required	Hours, days (and longer?)	Relative to energy	Esp. if on remote sites	Not an issue	Less important with high RES
	_						
Performance Low Medium High	Cost \$/kWh	Lifetime yrs	Energy /Power	Power MW	Size m ³	Weight t	Efficiency %
Li-Ion	500 (150)	3-10	2	0.001- 10	1 - 1000	0.03 300	>90
Flow battery	500	10	5+	0.1 - 100	10 — 10k	20 – 20k	80
Pumped hydro	150	60	4-30	200 – 2000	10m	10m+	73
Compressed air	80 – 250	40	2-26	100 – 300	100k – 500k	?	45 – 70
Thermal	5 – 300	10 – 30	10	0.001 - 100	0.1 – 10k	0.1 – 10k	40 – 80
Power to gas	4 – 50	10 +	10 ++	0.01 - 100	100 – 500k	?	35

System value ≠ Market value

Best ≠ Best

