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1. Introduction

The electricity market is special — it features a homogeneous good with
prices driven by the technical restriction of the merit order (the sequence in
which power plants are used). The price process shows seasonalities, mean
reversion and spikes, all of which make stochastic modelling challenging.
But the most striking distinction to most other commodities (and financial
assets) is the non-storability of electricity. It has to be used when produced.
Hence the relation between forward and spot prices must be driven by risk
premia only and can not be explained by standard no-arbitrage arguments,
storage or a convenience yield. In fact, the relationship must exhibit the
structure of an intertemporal risk premium in a pure way. This risk premium
has been analysed in terms of hedging needs of the various actors of the
market such as producers and retailers.

The risk premium is defined as the difference between the observed for-
ward price and the expected spot price. In this paper we will follow an
information-based approach brought forward recently in |Benth and Meyer-
Brandis (2009) to explain the risk premium. We will design a statistical
test to analyse the information sets used by market participants, and we
will show that the market risk premium can be explained in terms of these
different information sets.

For electricity markets empirical research has shown a rather inconclu-
sive and random behaviour of the risk premium. For example Longstaff
and Wang] (2004)) prove that the risk premium exists and is significant and
positive on average for high-frequency data of the PJM (the Pennsylvania-
New-Jersey-Maryland) market. They also find that the risk premium is
correlated negatively with price volatility and positively with spot skewness
(as suggested by Bessembinder and Lemmon| (2002) and discussed in the
next paragraph). Furthermore, Torr6 and Lucia (2011) examine short-term
futures (with a delivery period of one week) traded on the Scandinavian
NordPool. They, too, find a statistically positive premium that depends
particularly on the season during which the contract matures, being high-
est in winter and zero in summer. For the Spanish electricity market and
forwards with maturity within two months [Furio and Meneu (2010) find
that the risk premium decreases with unexpected variations in demand but
increases in unexpected variations of the level of hydroelectric energy capac-
ity. Moreover, Diko et al.| (2006) find a term structure for the risk premium
for data from the German, French and Dutch markets that features a change
of sign and negative values for large time to maturity. Their results are sim-
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ilar to [Kolos and Ronn| (2008) who use EEX and PJM data and include oil
and gas as more mature markets for comparison. A link between gas stor-
age and electricity forwards is established in Douglas and Popoval (2008) in
terms of the moments of the electricity spot price distribution confirming
the analysis of Bessembinder and Lemmon| (2002).

It is noticeable that incomprehension prevails as to the true character of
the risk premium. Bessembinder and Lemmon| (2002)) present a very influ-
ential one-period model in which the risk premium depends on the variance
and the skewness of the spot price. Their model features retailers” demand
as the only exogenous variable and they deduce their risk premium by ap-
plying market clearing and equilibrium arguments. |Benth et al.| (2008a)) try
to explain the term structure of the risk premium by taking market power
and risk aversion of retailers and producers into consideration. They suc-
ceed in explaining the change of sign and the negative premium for large
time to maturity as mentioned above.

However, as stated above, the important intrinsic property of electricity
is that it is non-storable. To illustrate the effect on prices consider the
announcement of a power plant to be closed down for, say, maintenance
reasons. Obviously, this will result in higher forward prices with delivery
over the time of the shut down. Still, this information will have no effect
on current spot prices as no arbitrage possibilities arise, i.e. we cannot buy
the underlying now and sell in the future.

This reasoning was the motivation for the recent paper by [Benth and
Meyer-Brandis| (2009). In this paper the authors complement the historical
filtration as generated by the spot process with additional future informa-
tion. This is done by means of the theory of the initial enlargement of
filtration (French ”Grossissement initial de filtration”). This theory was
developed mainly by French mathematicians in the 1970s and 1980s, for
example in |Jeulin| (1979)) or Jeulin and Yor| (1978).

Benth and Meyer-Brandis introduce the Information Premium as the
difference between the forward price under the finer (market) filtration and
the coarser (historical) filtration and find analytical expressions for a well-
known two-factor arithmetic spot price model. This model was introduced
in Benth et al| (2007) and is widely used (for example in Meyer-Brandis
and Tankov| (2008)) and Benth et al. (2008a))); we will introduce it in Sec-
tion[2] We remark that a related approach is followed in|Cartea et al|(2009).
There, the authors suggest a spot model which takes specific forward look-
ing information (in this case capacity and demand forecasts) into account.
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Still, their emphasis lies on simulating the spot rather than pricing forward
contracts.

In this paper, we will present a method to test for the existence of the
information premium empirically. This turns out to be non-trivial as the
premium is not measurable with respect to the historical filtration (as will
be explained in Section . Thus, the usual approach, a mere measure
change is not possible here. Instead, we will propose a method involving
regressions and Hilbert-space representations. The method will also provide
a time series for the information premium whose features will match our
economic intuition in size and shape. The approach is generally applicable
for testing for differences in information sets in any financial market.

In particular, we will analyse two market situations, both of which, we
claim, exhibit significant information premia.

Firstly, we will examine the beginning of 2008 with the introduction of
Emission certificates. After the first, rather non-committal phase of the
European Union Emission Trading Scheme (EUETS), the stricter second
phase commenced on 01/01/2008. The market anticipated a general up-
wards shift in prices and a large information premium can clearly be seen in
the prices observed. Indeed, in Figure [I| EEX prices observed on 1 October
of the year 2006 and 2007 respectively are illustrated where their delivery
period is represented as the length of the horizontal line denoting the price.
On the left hand side one can nicely see the typical shape of prices in winter:
lower values for October and April, a peak in January and February with
slightly lower prices in December due to bank holidays.

Okt. 06 Nov. 06 Dez. 06 Jan. 07 Feb. 07 Mrz. 07 Apr. 07 Okt. 07 Nov. 07 Dez. 07 Jan. 08 Feb. 08 Mrz. 08 Apr. 08

Figure 1: Monthly forward prices observed on October 1st 2006 (left) and Oc-
tober 1st 2007 (right). Lengths of horizontal lines denote the corresponding delivery
periods.

One faces a different situation in the subsequent year. The most striking
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feature here is the price increase between the December and the January
forward of more than 16 Euro (corresponding to some 34%, compared to
an increase of 4.50 Euro (7,5%) in 2006). Generally, there appears to be
a shift upwards (of about 10 Euro) as the remaining price variations are
very similar to what was observed the year before. The spot price ﬁ on
that day was around 45 Euro as indicated in the graphic. Clearly, the price
increase can be explained by the market’s anticipation of the effects due to
the introduction of the second phase of Emission certificates. The costs of
these certificates were obviously assumed to cause a major rise in electricity
prices. In contrast, the spot price did not anticipate the price increase, it
is well below and at the same level as the forward for the current month,
i.e. October 2007. The reasoning behind this behaviour is the non-storable
feature of electricity which prevents simple spot trading strategies.
Secondly, the consequences of the Tohoku earthquake which occurred
on 11 March 2011 will be examined. The consequent tsunami heavily dam-
aged several nuclear power plants, in particular that in Fukushima. Only
three days later, 14 March 2011, the German government reevaluated its
energy policy and issued the so called ” Atom Moratorium” by which the
seven oldest plants (eight reactors with a capacity of more than eight GW)
were to be shut down immediately for three months. This measure was
to allow for a new evaluation of the usage of nuclear power in Germany.
Still, spot prices on the EEX hardly increased at all as illustrated in Figure
2l Due to the season there was a lot of spare capacity. Also, two of the
plants, Brunsbiittel and Kriimmel (both in Schleswig-Holstein), had previ-
ously suffered from constant maintenance problems and were offline since
2007 and 2009 respectively. A third reactor (Biblis B in Hessen) had gone
offline earlier in 2011 for regular maintenance. This reduced the capacity
to be shut down immediately by more than three GW. Hence, because of
this and also due to higher wind generation there was no change in the
price-setting technology and thus hardly any change in spot prices.
Although the official end of the Moratorium was 15 June 2011 it was
widely expected that the seven plants would stay offline even after that date
and indeed their permanent shut-down was decided on 31 May 2011. The
effect of the Moratorium and this future outlook was a sharp increase in
forward prices, not only of those whose delivery fell into the three months
of the Moratorium but also of those with a later delivery period. As an
example, Figure [3| shows the evolution of the price of the forward with ma-

4As usually, we take the EEX day-ahead base load price as the spot price.
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Figure 2: The EEX spot (seven days moving average). Key dates in 2011 are
indicated. Range of data is 01/01/2011 until 15/08/2011.

turity in May 2011. The forward price had a mean of 46.93 Euro before
the Moratorium and a 57.83 Euro post-Moratorium mean price. This cor-
responds to an increase of more than 10 Euro, i.e. almost 25%. For the
second half of this time series we also see that prices remained more or less
constant until the last day of its delivery period which implies that by then
also the spot had adjusted to the increased price level.

Thus, summarising, one finds that forward prices reacted to some future
information (or market sentiment) which was publicly available but the
spot did not. For the remainder of this paper an empirical method shall be
designed by which one can rigorously show that parts of the forward price
cannot be explained by the spot (i.e. the historical filtration) alone.

The paper will be organised as follows: We will provide definitions, some
general results and the two-factor arithmetic spot price model in Section [2]
Also, in order to calculate prices, we will extend Benth and Meyer-Brandis
(2009) to the more realistic case which includes delivery periods for forwards.
Furthermore, in Section |3| we will present the method to demonstrate the
existence of the information premium whereas the results of the empirical
analysis will be summarised in Section [4 Finally, Section [5] will conclude.



May 2011 Forward Earthquake (11.03.2011)
"Moratorium" (14.03.2011) Decision to shut down the "7" (31.05.2011)
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Figure 3: The EEX May 2011 forward price. Key dates in 2011 are indicated.
Range of data is 01/12/2010 until 31/05/2011.

2. Model Setup and Forward Prices

2.1. Definitions and framework

In this section we will provide the necessary definitions and formulae
which we will use for the remainder of the papeif’]

Viewing forwards as derivatives of the spot we have the standard pricing
relation:

Definition 2.1. Classical Spot-Forward relationship. With Q a pric-
ing (risk-neutral) measur(ﬂ we have

F(t,T) = E¥Sr|F (1)

where F(t,T) denotes the time t-price of a forward maturing at T, Sy is the
spot price and EQ[-|F;] is the conditional expectation under the historical
filtration F; = o(S, : u < t).

®We remark that the notation used in this chapter considers contracts with a delivery
time rather than the more realistic delivery period. This ensures readability, the formulae
can easily be adapted to periods.

SWe remark that the spot price of electricity is not a traded asset and thus its dis-
counted value needs not be a martingale under the risk-neutral measure. Hence, all
measures Q equivalent to the real-world measure P are possible candidates and we will
later choose a measure minimising the difference between observed forward prices and
the conditional expectation.
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We can now compare the conditional expectation under the historical
measure with the conditional expectation under the pricing measure and
use the difference as an indicator for market sentiment.

Definition 2.2. Risk Premium. The risk premium is defined as
RY(t,T) = E*[Sr|F] — E¥[Sr|FY (2)
where the notation is as in Definition [2.1]

As mentioned above, the risk premium is subject to intense research.
Note that one often uses observed forward prices for the expression E2[Sp|F]
(by assuming the correctness of equation ) After calculating expecta-
tions under PP one then analyses the difference.

Since we want to study the impact of different information sets on for-
ward prices we introduce further filtrations finer than the historical filtra-
tion. We need a filtration which contains specified information on future
spot prices and a slightly coarser filtration which contains some un-specified
additional information. To be precise:

Definition 2.3. Filtrations. Let H; be a filtration which includes the
historical filtration as well as the information on the future value of the
underlying at some time point Ty > 1, i.e.

Hy = F,Vo(Sr,) (3)

Also, let G; be a filtration that includes some information on the level of
the future value of the underlying. We will call this filtration the market
filtration and we will assume that it represents the information available to
market traders. This yields the relationship F; C Gy C H,.

As an example of possible future information available to the market we
might consider G, C F; V O-(]]'{STTZ K}). For this threshold information we
know the value of the underlying will be larger than some constant K but
we do not know the precise value.

As [Benth and Meyer-Brandis| (2009)), we now define the information
premium properly:

Definition 2.4. Information Premium. Let G, be the market filtration
with extra information at Ty. Then the information premium is defined as

I3(t, T;Ty) = Fg(t,T) — F2(t,T) (4)

1.e. the difference between the forward prices under the market and the

historical filtration.
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In the following we will assume that all market participants work with
the filtration G. This implies that instead of assuming observed forward
prices equal EQ[Sy|F;] forward prices are calculated by market participants
as EQ[Sr|Gy].

The following straightforward result will be of the utmost importance
later:

Lemma 2.1. Orthogonality of the information premium. The in-
formation premium is the residual of projecting the forward price under G,
onto the space L*(F; Q). In other words

EC%[Ig(t, T)|F] =0 (5)

Proof. From Definition [2.4] the fact that F; C G; and the tower property
the result follows straightforwardly. m

As mentioned before this result poses a problem when trying to identify
the information premium empirically. It is obvious that it holds for all
equivalent measures and thus the information premium cannot be attained
by a measure change (the general approach in Financial Mathematics and
the method used frequently to deduce the risk premium).

We conclude the introductory remarks with a little result connecting the
two premia:

Lemma 2.2. Relation of the premia. We have the following relation
between the information premium and the risk premiums:

R%(t,T) = Rg(t,T) — I3(t,T) + I5(t,T) (6)
Proof. Follows immediately from Definition [2.4] and Definition [2.2] O

2.2. Two-Factor model

In this section we introduce the two-factor arithmetic spot price model,
which will be the basic model for our study. The definition is as follows

Definition 2.5. Spot Model. In the arithmetic spot price model the spot
price process Sy 1S given as

Se=At) + X; + Y3, (7)



with A(t) a deterministic function to capture seasonal influences, X; a stan-
dard Ornstein-Uhlenbeck processes given by the stochastic differential equa-
tion

dXt = —O[Xtdt + O'th (8)

where o € RT is the mean reversion parameter, o > 0 the volatility and W,
a standard Brownian motion, and

dY; = —pY.dt + dL, (9)

where again B € RT is the mean reversion parameter and L; is a square
integrable Lévy process.

By solving equations and @ for some u < t we can write equation
more explicitly as

t t

Se=Alt)+e X, + o / =)W, + e Ay, 4 / PdL,
(10)

X, is supposed to model the long-term behaviour of the spot and we will
call it the base component. Y; models the short-term fluctuation, i.e. the
spikes, and we will call it the spike component.

As a specific example we will (as Benth et al. (2007)) use a compound
Poisson process with double-exponentially distributed jumps for L; (this is
also called the Kou Model, presented by |[Kou (2002)). A formal definition is
provided in Appendix [Appendix Al This model specification is analytically
tractable and has been shown to perform reasonably well empirically, see
for example Benth et al.| (2010)).

The key result concerning the theoretical establishment of the informa-
tion premium relies on the theory of enlargement of filtrations. It goes back
to an initiating paper by [lto| (1978) and has been adjusted to Lévy processes
and non-complete future information (see chapter VI of [Protter| (2005)).

Theorem 2.1. Ito’s theorem extended to Lévy processes. Let L; be
a Lévy process and let (Fy)i>o be a filtration and let G, C Hy = FyVo(Lry).
Then L is a semimartingale with respect to Gy. Also, if E[|L|] < oo for all
t > 0 then the following process

_ Y B[Lp, — LG
f(t) _Lt_A TT s ds (11)

1s a Gy martingale.
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Thus, the theorem provides the martingale decomposition of L, under
the market filtration G;. Using this we can explicitly calculate the informa-
tion premium:

Proposition 2.1. Information premium for the Spot model. De-
noting by ¢(-) the log-moment generating function of Ly (see Deﬁm’tion
of Appendiz |[Appendiz Al for details) the information premium

with Lévy information at Ty > T is given by:

1 (ElLy, — L | G] ¢,(0)> (1— PT-0) (12)

]g <t7 T) -7 (

g

Proof. Because our spot model is arithmetic and by the independence of X,
and Y; most terms cancel:

Ty —t

T T
E[Sr | G] —E[Sr | F]=E { / e PT=9)qL, | gt] ~-E [ / e PT=)dL | F,
t t (13)

where the expectation under F; is easily calculated

E { / ' e PT=)qL | ]—"t] = 1¢'(0) (1 —e7T) (14)

Now, we can decompose the Lévy process according to equation of Ito’s
theorem.

T T
E {/ e—ﬁ(T—s)dLS | gt} —F {/ e—B(T—s)E[LTr — L ’ QS] ds | G, (15)
t t

T’I'—S
Te—,B(T—s)
= E|lLy, — L 1
| = B -LGlas ()
E[Ly, — L, | G] 1 o
= — (1 =PI 17
Tr —t 5( ‘ ) (17)

where in the last step another technical result was applied (Proposition A.3
in Benth and Meyer-Brandis| (2009)). Collecting terms yields the required
result. O]

2.3. Forward Prices under different measures with delivery period

To ease notation we used the ”delivery time” notation rather than the
more realistic ”delivery period” notation so far. This period can have dif-
ferent lengths and on the EEX (cf. EEX| (2011)) for example there are

11



monthly, quarterly, half- and yearly contracts. In other words we denoted
the forward price as F'(t,T) whereas for the empirical analysis we will have
to calculate F'(t,Ty,T3) for a delivery of electricity between time T; and Ts.
The theoretical results taking this into consideration will be provided here.
We will assume that settlements only take place at the final date T5. Then,
the risk-neutral valuation formula yields for the forward price (see |Benth
et al.| (2008b)), pp. 29, 30):

Ts 1
F(t,Ty,T3) = E? ud 1
011 =80 [ o Sl (19

A parametric measure change from the real world measure to a risk-neutral
measure is now going to be conducted. As usual, we apply Girsanov’s
theorem to the Brownian part of the spot price and an Esscher transform
to the Lévy part. As X; and Y} are independent, we can apply both methods
separately and obtain a product measure.

For the Brownian part we define the Radon-Nikodym derivative Zy ()

as usual
dQw “Ow(s) 1 /t O3y (s)
Iw(t) = —| = — [ —=dW,— = ———=d 1
w(t) dP |5, exp< /0 o 2 Jo o2 s (19)
Under Qp
av, =~ (20)
o

is again a Brownian motion. Oy (t) is called the market price of risk for the
base component. Also, the dynamics of X; are altered as follows

I 3
dXt = —OéXtdt + O'th = —O[Xtdt + U(th + m dt) = (QW(t) — OéXt)dt + O'th
g

(21)

Similarly, if L; satisfies the integrability condition Lemma [Appendix A.2)|
of Appendix we define the Esscher transform

_ e o ([ oz~ [ ooinas) 2

Zr(t) =
where the parameter function 0(t) is called the market price (of jump risk)
for the spike component. We refer to |Applebaum/ (2004)) (chapter 5.4) for
12




more details and a technical discussion. In Appendix [Appendix B| Lemma
[Appendix A.3, we show that the Poisson process with double-exponential

jump sizes satisfies the condition.

We obtain a risk-neutral measure Q% = Qu x Q. Here 6 = (O, 0) is
a vector of parameters corresponding to the measure change.

We can now calculate the expectation in to obtain the Q-forward
price.

Proposition 2.2. Forward price under Q and with delivery period.
The forward price with delivery period from Ty until Ty under the measure
QY is given by

1 T _
FQ(t’Tl’T2) = T T ( A(u)du+o7(t,T1,T2)Xt +,6(t,T1,T2)Y;)
2 — 141 T

T>

1 &
Ow (s)a(s, T1,Ty)ds +
T-T (/t w1

+

t

(23)

where ¢(u) denotes the log-moment generating function of the Lévy process
L at time t = 1 and where again 0 < t < T} < Ty. Auxiliary functions

a(t, v, Ty) and B(t,Ty,Ty) are given in Appendiz [Appendiz B, equations
B and (B2).

Proof. Details are provided in Appendix O

For constant parameters we can simplify:

Corollary 2.1. Forward price with constant parameters. With con-
stant market prices of risk the forward price with delivery is given by

1 = _
F@(t,T1,T2) =77 (/ Aw)du + a(t, Ty, To) X, + B(t,ThTQ)K)
2 — 41 Ty
g (Owa( T ) + 6/ (0,) B0, 70, T2) )

where functions d(t,Tl,Tg),B(t,Tl,Tg) are defined in Appendiz |Appendin
[B, equation (B.3).

To calculate the forward price for the case that ¢ is within the delivery
period we find:

13
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Corollary 2.2. Forward price during the delivery period. For 0 <
Ty <t < T, the forward price under Q takes the form

T>

1 t
FQ(t,Tl,TQ) = < Sudu—i-

Audu+T—tF@t,t,T>
o1 \Up t (w) (To = t) F>( )

(24)

We can retrieve the P-forward price as a special case of the results above
by setting the measure change parameters 0,(t) = Oy (t) = 0. We refer to
corollary [Appendix B.1] of Appendix [Appendix B

We have now developed the toolbox to commence our empirical analysis
of the information premium.

3. Methodology of the Empirical Analysis

3.1. Motivation

The information premium is orthogonal to F;, independent of the un-
derlying measure (equivalent to the real world measure P (see Lemma).
Thus, we cannot explain the premium by a measure change. However, for
pricing a measure change takes place nonetheless and we choose the pricing
measure Q as a distance-minimising measure between the expected spot
and the forward price. Thereby we will "normalise” the remainder term
being analysed in the following. A constant Girsanov change of measure
will be conducted later (agreeing with the simple (and constant) setup fol-
lowed so far). Non-constant Girsanov parameters as well as an Esscher
transformation can easily be added if required.

Leaving out delivery periods again for the ease of notation we can define
a new spot-forward relationship:

Definition 3.1. New Spot-Forward relationship. The fair price of a
forward contract in this framework is given by

Fg(t,T) = E%[Sr|G/] (25)
where Q s a pricing measure and Gy is the market filtration.

Here, Q will be calibrated to the market. Without any assumptions
about the additional information (such as the threshold discussed in Section
2.1)) this expectation cannot be calculated or simulated, since the structure

of the filtration G; is not known. However, for our empirical work we will
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A

assume that observed prices F'(t,T) were calculated by market participants
with respect to G and Q. Thus,

Fe(t,T) = F(t,T) (26)
In terms of the historical filtration we can calculate forward prices as
FY(1,T) = E2[S7|F) (27)
Now, we replace the theoretical information premium (Definition
Ig(t,T) = Fg(t,T) = FA(t,T) (28)
by its empirical version
I3(t,T) = F(t,T) — E¥[Sy|F] (29)

As a consequence fg(t, T) is our best estimate of [g (t,T).

The goal now is to show that fg (t,T) exists (i.e. is non-zero) and that
it is not F;-measurable (i.e. that it satisfies the orthogonality property). In
mathematical terms this translates to:

1. 1 g(t, T) is significantly not white noise
2. fggt,T) is orthogonal to L*(F,Q), or, by Lemma , equivalently
E[I§(t,T)|F] = 0

To test I g (t,T) for white noise is fairly standard. A simple graphical method
is looking at the graph of fg(t, T') as well as the graph of its auto-correlation

function (acf). Also, one can test fg(t, T') using a standard autocorrelation-
based test like Ljung-Boz.

3.2. Conditional expectations, Hilbert bases and the regression approach

To our best knowledge there is no literature on how to test for non-
measurability empirically. In this section we will therefore propose a Hilbert
representation and regression based approach. Our test will be able to tell
whether or not one time series is measurable with respect to another one.
We want to show empirically that E[fg(t,T)|ft] = 0. In other words we
want to evaluate a conditional expectation

Flw, ty,t) = EYX, | F,](w) , k<I<n (30)
15



over a discrete grid of time points ty < ... <ty < ... <t, =T. For suitable
X we thus consider the (separable) Hilbert space L?(F,Q) spanned by a
countable, orthonormal basis with elements ¢,(X;,) for v € N. Then, one
can try to express F'(w,t;) as a linear combination of these basis elements:

o0

w tk Zav¢v th (31)

v=1

We will use stationary increments of the time series over the lifetime of a
forward and regression to find the functional form of the conditional expec-
tation.

The theoretical background of such an approach can be found in may
scoures, see e.g. Royden| (1968). Let (2, F,Q) be a measure space and
consider the space of all square integrable random variables relative to Q,
i.e. the space in which the elements X satisfy

/|X|2d<@ < 00 (32)

These spaces are separable. Also, one knows that the conditional expecta-
tion is then a contraction of the space L? meaning that

X € L2(Q, F) = E[X|F) € L(Q, Fo) (33)

for some sub-sigma algebra Fy C F. Then let Fy = o(Y) for some random
variable Y. The conditional expectation E[X|o(Y')] is also o(Y")-measurable
and thus there exists a measurable function F : (22, Fy) — (R, B(R)) such
that

F(Y) = E[X]o(Y)] (34)

A separable Hilbert space possesses complete countable orthonormal sys-
tems and one can write every element of that space as a linear combination
of elements of the orthonormal system {¢;, ¢,...}, in particular also the
conditional expectation

F=Y a, (35)
v=1

Hence, regressing a sufficiently large sample of pairs (X, Y') on a sufficient
number of basis functions we will get coefficients ¢, and an approximation

to the functional representation of the conditional expectation.
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In our implementation we use a whole time span t) < ... <t < ... <
t, < T with data

Su s I, T) YO<Ek<n (36)

where the horizon T is kept fixed. An example for such a time span would
thus be the "lifetime” of one forward (the time it is traded and priced on
the market) and this is the approach followed in the next section. We want
to test how much of the variation in fg(t, T) can be explained by S; (and
thus by F;). We conclude non-measurability if the regression would yield
little explanatory power and all regression coefficients were significantly
zero. From this E[fg(t,T )|Ft] = 0 would follow, consequently. Still, one
has to be careful as it is essential for this method to work properly that
both time series under consideration are stationary (also to avoid spurious
regression). Hence, we use first differences and our regression formula is

N
AIZ( T To) =Y a;AS) + Ae(t) (37)
i=1
This approach is in line with the foundations described above because one
has from stationarity the property that

AS, ~ ASy , AR, ~ AR, Vt,u (38)

Summarising, in this section, we developed the following agenda for
testing for the information premium:

1. Calibrate the spot model to the observed spot data
Calculate the forward prices under measure P
Change the measure to risk-neutral Q

Calculate the forward prices under measure Q
Choose a certain forward to be examined

Calculate the residual term fg(t, Ty, T,) for all ¢

Test fg (t,T1,Ts) for white noise
Test fg (t,T1,Ts) for non-measurability

P NSO W

e Make fg (t,T1,Ts) and corresponding S; stationary

e Regress the two time series and check significance (F- and t-
statistics)
17



4. The Empirical Analysis

4.1. Empirical Measure Change and Structure of Forward Prices

There is a large variety of literature about how to fit the two-factor
arithmetic spot model, see Benth et al. (2010), Benth et al. (2008a) and
Meyer-Brandis and Tankov| (2008) for example.

For futures prices there are several time series which we consider. Bloomberg,
Reuters and the EEX provide daily data organised in columns each repre-
senting one of the (month-) future{] traded on the current day. This means
that a rolling effect occurs, i.e. that if one wants to track a certain contract
through its lifetime one has to read the data table diagonally in a top-right
to bottom-left direction. Hence, there are essentially three ways to examine
forward prices, i.e. considering...

e the forward maturing in a certain number of months for all days (i.e.
t and [T},T5] moving through the time series, 77 and T being the
beginning and the end of the delivery period)

e the forward maturing in a specified month (i.e. t moving though the
lifetime of the forward, 77,75 fixed)

e all forwards traded on a specified day (i.e. with fixed ¢, compare
Figure [1)

In Section [2.3| we have seen the formulae for the prices of forwards with
delivery period and under both measures, P and Q. As mentioned before,
we will consider constant Girsanov parameters when changing the measure.

Empirically, Girsanov parameters were chosen in such a way as to min-
imise the difference between the observed forward prices and the calculated
Q-prices. This is done globally (i.e. over the length of the whole data set) for
each time to delivery period. This means that constant distance-minimising
parameters were identified (by means of least squares) for each time until
delivery, for example the three-months-forward or the four-months-forward.

The reason for this approach is that we believe that market participants
adjust risk for (global) classes of forward contracts. Generally, a two-months

"Observed prices are from futures contracts. Since we can regard interest rates as de-
terministic for the period under consideration, forward and futures contracts are equiva-
lent. This assumption is standard in the relevant literature, as for example in [Longstaff
and Wang| (2004). Furthermore, at the time of the particular cases we consider half-year
interest rates were almost constant.
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(time-to-delivery) forward will be priced differently than a six-months (time-
to-delivery) forward but all two-months forward contracts are similarly risk-
adjusted by market traders. This is in line with the risk-premium literature
such asBenth et al.| (2008a) where, as discussed previously, the authors find
positive risk premia for short term deliveries and negative ones for long term
delivery periods. This (non-orthogonal) effect is captured by our method,
at least for the C'O, data (see Table[2). There have been some fundamental
changes to prices in recent years (compare Table .

To examine the relation between the different observed and calculated
objects we will temporarily consider the EEX dataset ranging from 06,/10/2003
to 26/05/2006. The spot of this range is illustrated in Figure [4]

160

140 \I
120

06.10.2003 06.04.2004 06.10.2004 06.04.2005 06.10.2005 06.04.2006

Figure 4: EEX spot price. Range is from 06/10/2003 until 26/10,/2006

In the following, forwards with different and fixed time to maturity will
be considered. This will be done by comparing the observed prices for a
forward delivering in n months/quarters with the calculated prices for the
same delivery period. The observed forward price with a given time to
maturity will be illustrated in dotted light grey, whereas the forward price
calculated under PP will be in dark grey, the forward price calculated under
Q in medium grey and the realised price, i.e. the future looking arithmetic
mean of spot prices during the delivery period (thus the series is shorter)
in light grey.

Figure shows the forward prices for the current month. All graphs,
especially those two calculated are very close to each other. The most
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Figure 5: Different EEX and calculated forward prices. The time series for one
and six months and four quarters until delivery period.



striking part of this figure happens during the winter 2004/2005 where in the
beginning of each month the calculated prices very much overestimate the
observed and realised prices followed by a sharp decrease until the realised
price is reached at the end of the month. The reason for this behaviour
lies in equation : the price of the forward for the current month is the
expected value of future days plus the arithmetic mean of that part of the
month already in the past. Hence, the spot model seems not to fit this
period very closely.

Figure shows the corresponding picture for six months until the
delivery period. Calculated forward prices are piecewise constant. The
reason for this behaviour is the size of the mean-reversion parameters which
flattens out prices (i.e. influence of current spot prices becomes negligible).
The difference between the two calculated time-series is now much bigger
(more than five Euro) and one can clearly see that the risk-neutral price is
very close to observed prices. A more surprising feature is that the real-
world price seems to be closer to the actual price realised later. The same
fact can be observed in Figure which shows forward prices with a
delivery period of a quarter and a time to maturity of four quarters, i.e.
one year. Again, the risk-neutral price is coupled with the observed price
whereas the real-world price is closer to the realised price.

Summarising, the sizing of this phenomenon grows with time to matu-
rity. The further the delivery period the larger the effect of the measure
change and the more extreme and obvious is the coupling observed /risk-
neutral and realised /real-world prices.

For the rest of this paper we will consider the lifetime of single forward
contracts rather than examining the corresponding time series globally. The
reason is that the information premium, i.e. the influence of individual
pieces of information, will show much clearer for single forward contracts.

4.2. The beginning of the second phase of the EU ETS

Finally, we now have all preliminaries to empirically analyse the begin-
ning of the second phase of C'O, certificates (as motivated in the introduc-
tion). Our goal is to prove, by the method developed in Section |3, the
existence of a significant information premium. The data set considered in
this subsection will be the EEX spot baseload price from 01/02/2007 until
30/10/2008, consisting of 639 data points. This data set was selected as to
include the crucial date 01/01/2008 as a midpoint.

Details about the seasonality function A(t) and fitted parameters for

this data set can be found in Appendix and Table [C.17} Table
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provides the fitted values of the stochastic parts of the spot price.

Table 1: Fitted parameter values for the data set 01/02/2007 until 30/10,/2008.

Parameter ‘ « o I5; A p q m 72

Value ‘0.538 11.108 0.786 0.034 0.955 0.045 0.019 0.027

The change of measure parameters are given in Table 2l They are posi-
tive for the first three months and negative for more distant delivery periods.
As mentioned above this confirms the findings of Benth et al.| (2008a).

Table 2: Constant Girsanov parameters for different forward classes.

Forward Class ‘ 1m 2 m 3m 4 m 5 m 6 m

Girsanov  parameter | 0.164 0.734 0.153 -0.593 -1.893 -3.199
Ow

The spot for the range of dates as mentioned above is illustrated in
Figure [f] Already in this figure one can observe the introduction of the
C' Oy certificates as December 2007 and January 2008 are very volatile and
separate the data set into two parts. In 2007 spot prices are around 30 Euro
with relatively little volatility and the prices in 2008 are at least around 50
or 60 Euro with a slightly higher volatility. Thus, prices exhibit not only
the usual slow positive trend but also a general shift upwards.

In Figurem all objects under consideration are illustrated (here, all series
are with respect to remaining six months until delivery period, i.e. the
first type of perspective discussed earlier). Colors of graphs are as in the
last section. Generally the figure exhibits greater differences between the
observed forward and both, the P- and the Q-price.

With these four prices we can now calculate the two premia:

e The risk premium R;Qﬁ(t, Ty, Ts)

e The residual term fg(t, T, T3)

4.2.1. Introduction of COs certificates: The residual fg(t,Tl,TQ)

We now change perspective by choosing one special forward. All the
figures so far in this chapter were of the first type discussed in Section .1}
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Figure 6: EEX spot price. Range 01/02/2007 until 30/10/2008.
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Figure 7: Observed and calculated forward prices. Here, delivery is in six months.
Range of data is 01/02/2007 until 30/10/2008.
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In the following it will be the second type, i.e. following the lifetime of a
forward (moving ¢, fixed T3, T5).

Using the definitions and notations including the delivery period the
residual term fg (t,T1,T3) is defined as

8,71, 1) = F(t, Ty, Tp) — E¥ L / S, du|F] (39)
T
This object will be calculated for four forward contracts living before,
after and during the introduction of the C'O, certificates. These were chosen
to be those contracts with delivery period in

e November 2007
e January 2008
e March 2008

e August 2008

Figure |8] gives an example of the time series involved for the forward
maturing in January 2008. On the one hand one can see the constant
behaviour of the P-expectation. The expectation under @Q on the other
hand shifts. This is due to the (global) measure change which is different
for each forward class (one-month, two-month etc.).

Figure @ shows fg(t, Ty, Ts) and its autocorrelation function for all four
forwards.

The most interesting part of this figure is Figure , i.e. the residual
for the January 2008 forward. It is large and positive for almost the whole
time span and has a larger volatility the closer time to maturity comes.
Then, from 01/01/2008 it decreases and even becomes negative in the end.
This is exactly the type of behaviour one would have expected from the
motivating example: a positive information premium which tends to zero
after the spot itself finally reacts in real-time to the introduction of the
CO; certificates. Very similar is the picture for the March 2008 forward
(Figure where one finds again positive values for the months of 2007
followed by negative values for 2008. This can be interpreted presuming
that the market expected a price increase due to C'Oy certificates which
was overestimated.

All autocorrelation functions indicate a stationary first difference.
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Figure 8: Forward with delivery in January 2008. Observed and calculated prices
over its lifetime.

Table 3: Properties of fg (t,T1,Tz) for the four different forwards.

Nov 07 Jan 08  Mar 08  Aug 08
Mean -0.32 9.64 -1.14 -2.58
Std. dev. 6.58 4.60 4.28 4.43
# of days > 0 | 52 119 52 34
# of days < 0 | 77 7 71 93

As mentioned in the agenda one needs to show that fg (t,T),Ty) is sig-
nificantly non-zero. All four series have mean unequal to zero with the most
extreme being the January residual with a value of 9.64 Euro (compare Ta-
ble |3). It is obvious from the graphs that none of the residuals is white
noise. This is confirmed by applying a Ljung-Box test whose results are
shown in Table [d The null hypothesis is rejected for all levels and all four
forwards.

Table 4: Ljung-Box test for white noise for fg(t, T, T5).

| Nov 2007 Jan 2008 Mar 2008  Aug 2008
Ljung-Box | 867.68 738.84 1606.87 797.01
2 (95%) | 36.06 35.73 35.40 35.84

Hence, the residual term is significant not zero.
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4.2.2. Introduction of COy certificates: Regression results

As explained in Section [3| we will use a regression-based approach to
show non-measurability. The goal of this approach is to show that the
variations in the spot cannot explain the variations in the residual term.
The basis used in this chapter will be the polynomial basis, i.e. {S* i € N}
although the choice of basis does not alter the general result. As explained
in Section [3| we will use first-differences to have stationary time series. This
can be justified by applying the Dickey-Fuller test of stationarity (see Table
5): The Dickey-Fuller test rejects stationarity at all levels for the pure time

Table 5: Dickey-Fuller statistics for time series and their first differences

X S Nov 07 Jan 08  Mar 08 Aug 08
DF(X) |-084  -0.68 -0.13 -0.25 -0.31
DF(AX)|-19.98  -7.23 -7.68 -8.37  -6.80

series while it accepts stationarity at all levels for first differences.
Therefore we consider the regression

N
Aig(f, T17 Tg) = Z GZASZ + Aﬁt (40)

i=1

Hence, we are now examining the increments of the spot and the residual

term. The results of this regression with N = 10 are given by Table [6; The
Table 6: R?s and F-statistics of the regression from AS onto Afg, N =10

| Nov 07 Jan 08  Mar 08  Aug 08
R’ 0.14 0.07 0.03 0.07
F-statistic | 1.47 0.65 0.35 0.75

critical value of the F-distribution at the 95% level for all four data sets
is 1.88 and thus for all four series the hypothesis of value zero coefficients
is accepted (still, results for November 2007 are less obvious as expected).
Also, all individual coefficients have zero value and t-statistics are insignifi-
cant at all levels so that none of the basis polynomials has any explanatory
power. We refer to Table of the appendix for details. Results do not
change with larger N.

Thus, one can conclude that the spot does not help to explain the varia-
tions of the residual term. We have thus proved that there exists a substan-

tial part of the forward price which is orthogonal to the historical filtration
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and which is non-measurable. This additional information premium is in-
duced by pricing under an enlarged filtration including some publicly known
future information.

4.2.3. Introduction of C'Oy certificates: Discussion of results
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Figure 10: The information premium Ig(t,Tl,Tg). Corresponding to the January
2008 forward.

Figure again shows the information premium fg(t,Tl,Tg) for the
forward with delivery period in January 2008. It is positive over nearly the
whole lifetime of the contract with a mean of 9.64. The other residuals of
Figure [9] have much smaller means of —0.32,—1.14 and —2.57 respectively.
The second important feature is that the residual is relatively stable over
the first 70 days (with a variance of 2.31), followed by a more turbulent
period (variance 8.43 from day 71 until the beginning of January). Then
from 01/01/2008 the residual sharply drops from over 9 Euro to negative
values in the end of January.

Considering the extra information about the introduction of the emis-
sion fees this behaviour was expected. Clearly the market hypothesised
an upward shift in electricity prices due to higher costs induced by the
certificates. This upward shift corresponds to the positive graph of the
residual. During January this additional information is then step by step
incorporated into the historical filtration and the information premium thus
becomes negligible.
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Let us discuss the value of the residual shortly. The EEX spot price for
C'Oy certificates during the second half of 2007 was practically zero (less
than 8 cent, for data see (2011))), the reasons for this being over-
allocation and the no-banking property. The forward price for the year
2008 (i.e. the beginning of phase two) on the other hand was between 18.50
Euro in August 2007 and 23.80 Euro in November 2007, with an average of
around 22.00 Euro for one tonne of C'O;. Assuming an average efficiency
factor of 0.70¢COo /MW h (i.e. a typical value for the German market) this
results in extra costs in 2008 between 12.95 Euro and 16.66 Euro which is,
in fact, very similar a number to our residual in Figure [10] Hence, also the
size of the residual is in line with the economic intuition.

4.8. The Japan earthquake and the ”Atom Moratorium”

Here, we will discuss the German ” Atom Moratorium” as motivated in
the introduction. Again, electricity data will be taken from the EEX and the
time range considered is now 01/09/2009 until 15/08/2011 which are 711
days. As mentioned above the critical dates are 11/03/2011 (earthquake),
14/03/2011 (Moratorium), 31/05/2011 (final decision to close old plants)
and 14/06/2011 (end of Moratorium). Figure [L1|is a plot of the data set.

——EEX Spot Earthquake (11.03.2011)
———"Moratorium" (14.03.2011) Decision to shut down the "7" (31.05.2011)
—~ — End of "Moratorium" (15.06.2011)
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Figure 11: EEX spot price. Range from 01/09/2009 until 15/08/2011.

Perhaps the most striking feature of this graph after analysing the spot
range from Section [4.2] is that there are hardly any spikes. Those spikes
still existent mostly have negative heights. Overall liquidity and market
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design seem to have improved. Negative jumps will mostly be caused by
renewables, wind in particular. Electricity thus produced has to be used by
law. Strong wind will therefore lead to a huge price decline, especially in
times of low demand. An example is Christmas 2009 which featured a daily
average price of less than —20 Euro.

As before, we commence the analysis by fitting the spot model. The
resulting parameters are provided in Table and Table [7]

Table 7: Fitted parameter values for the data set 01/09/2009 until 15/08/2011

Parameter ‘04 o Ib; A P q m o
Value ‘0.499 6.01  0.864 0.027 0.105 0.895 0.046 0.033

The corresponding change of measure parameters are given in Table
B We remark that the changes in the market described above are also
confirmed by these parameters. We do not see the typical change of sign
which was partially induced by retailers’ fear of positive spikes.

Table 8: Constant Girsanov parameters for different forward classes.

Forward ‘1m 2m 3 m 4 m 5m 6 m
Girsanov ~ parameter | 0.210  0.624 0.650 0.614 0.512 0.363
Ow

Again, we will examine specific forward contracts. We chose the con-
tracts with delivery in

e February 2011
e May 2011
e July 2011

4.3.1. Moratorium: The residual jg(f,Tl,Tg)

We calculate expectations under P and Q for the three forward contracts
mentioned above and subsequently plot the corresponding residual terms
fg(t,TI,T ») on the left panel of Figure . The right panel of this figure
shows, as before, the auto correlation function (acf) of the residuals.

The autocorrelation functions again show that residuals are non-stationary

but indicate that their first differences will be. The price impact of the
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Moratorium can clearly be seen in Figure [12(c)| and Figure [12(e) whereas
the residual Figure [12(a)| seems to be of much more regular behaviour.

Table 9: Properties of fg(t, Ty, Ts) for the three different forwards

Feb 11 May 11 Jul 11
Mean 1.27 -2.07 2.92
Std. dev. 1.76 5.36 4.05
# of days > 0 | 93 53 7
# of days < 0 | 36 75 48

Important properties of the three residuals are provided in Table [9]
Mean and standard deviation of the residual of the February forward confirm
regularity (i.e. absence of an information premium). The residual of May
2011 has a much higher standard deviation and is also clearly divided into
two parts: before the Moratorium (mean of —6.36) and after (mean 3.82).
We have a similar situation for July 2011 where there is a mean of 6.54
during the three months of the Moratorium and one of —0.64 before and
after. Also, market participants seem to have reevaluated the new legal
situation in June and July as the residual returns to its pre-earthquake
level. This will be discussed later.

Again, to confirm the non-zero property we apply a Ljung-Box test for
white noise whose results are shown in Table The null hypothesis is
rejected for all levels and all three forwards.

Table 10: Ljung-Box test for white noise for fg)(t, T1,T5)

| Feb 2011 May 2011 Jul 2011
Ljung-Box | 522.97 1645.87 1094.83
x* (95%) | 36.06 35.95 35.62

After finding the residuals to be significant non-zero we again continue
to check their orthogonality.

4.8.2. Moratorium: Regression results

In this section we will, as before in Section [£.2.2] use our regression
test method to check whether the residual fg(t, Ty, Ty) is measurable with
respect to the spot. Again, the basis used will be the polynomial basis of
the spot price {S% i € N}.
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Table 11: Dickey-Fuller statistics for time series and their first differences

X 'S Feb11  May 11  Jul 11
DF(X) |-0.48 -0.95 -0.28 -0.21
DF(AX)|-21.46  -9.97 -6.86 -6.52

The Dickey-Fuller test of stationarity yields the results summarised in
Table[L1] The critical value for the 10%-level is approximately —1.61. Thus,
the Dickey-Fuller test rejects stationarity at all levels for the pure time series
while it accepts stationarity at all levels for first differences.

The stationary regression formula is again

N
Ajg(t,Tl,Tg) = ZCLZASZ + AEt (41)

=1
The results of this regression with N = 10 are displayed in Table [12]
Table 12: R?s and F-statistics of the regression from AS onto Afg, N =10

| Feb 11 May 11 Jul 11
0.14 0.06 0.09
1.96 0.69 1.09

R2
F-statistic

The critical value of the F-distribution at the 95% level is 1.91. The
hypothesis of zero coefficients is accepted for the May and July forwards,
although not for the February contract. Values and t-statistics of the indi-
vidual coefficients (for May 2011) are provided in Table and confirm
zero coefficients, insignificance and thus non-measurability.

4.8.3. Moratorium: Discussion of results

Figure|[13|shows the residual for the forward with delivery in July 2011 in
combination with key dates. In the previous section we found this residual
to be neither zero nor measurable and so we claim this is the information
premium.

It is slightly negative for the first one and a half months of the contract’s
lifetime. Then, it jumps following the Moratorium oscillating around 6.00
Euro. Still, even after the final decision to shut down the seven old plants
(and before the beginning of the delivery period) the residual tends back to
zero. We remark that the information premium is a function in time and

it seems that market sentiment about the consequences of the new policies
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Figure 13: The information premium Ig(t,Tl,Tg). Corresponding to the July 2011
forward contract.

changed over the lifetime of the forward. There are a number of reasons why
the information premium would tend to zero after some time, especially after
the legislator clarified the situation (even though by deciding the permanent
shut-down). Firstly, Germany used to be an exporter of electricity with
an installed capacity much larger than even domestic demand peaks in
winter. Secondly, the delivery period of this forward (i.e. July) coincides
with the usual yearly maintenance of most nuclear power plants, so that,
for this month, the impact would be minimal. Thirdly, as mentioned in the
introduction, three of the reactors were offline and remained offline. Figure
shows that this change in market sentiment took place during June 2011
which is in line with the information premium identified for the May 2011
contract, i.e. Figure . This residual remained at the increased price
for the rest of its lifetime.

4.4. Additional empirical investigations and discussion

4.4.1. Further regressors

As the historical filtration does not only represent today’s information
but also that of the past one might claim that we only showed the residual
to be non-Markovian in the spot price. Thus, we add moving averages of
the spot of different lengths to the list of regressors to include past spot
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knowledge. The regression function is then

N+1
NG T, Ty) = e MA(S) + ) a;AS] + 6 (42)
i=2
where [ denotes the length of the moving average; we tried lengths | =
2,4,7,10,30 days. For both data sets we found the general result was not
altered and the moving average’s coefficient was significantly zero.

To answer the question whether the price movements we identified as
the information premium were not trivially induced by some correlated time
series we also add polynomials of different assets and commodities to the
regression. This is to ensure that the introduction of C'O, certificates and
the Moratorium constituted the additional future information. These time
series are Brent oil spot (EUETS data set), EEX gas (Moratorium data set)
and the DAX stock index (EUETS data set). None of these add largely to
the quality or the significance of the regressions (less than 5% R?, mostly
insignificant coefficients).

After the results in this subsection and the last sections one might further
ask the question whether our test can actually reject the null hypothesis
of non-measurable residuals at all. We will discuss such robustness issues
in more detail in Section [£.4.2] Now, we will quickly discuss a related
issue, namely the results of adding DAX index (the German stock index)
polynomials to the regression on the Moratorium data set, i.e.

N1 N2
Afg@(t, T17 TQ) = Z alﬂDAXZ + Z CLjAStj + € (43)
=1 j=Ni1+1

Table [13| provides R?s and F-statistics for the February and May 2011
forwards.

Table 13: R2%s and F-statistics for regressions including the DAX index for February and
May 2011 forwards

Forward Regression R? F-stat
Feb 2011 Ny =1, Ny,=1 |0.007 2.48
Feb 2011 Ny =5, Ny =15 ] 0.25 2.38
May 2011 | Ny =1, No =1 | 0.08 10.52
May 2011 | Ny =5, No =15 | 0.62 11.97

For the May 2011 forward, the huge increase in R? and the F-statistic is
surprising, even more so as it does not feature for a pre-Moratorium forward

35



such as February 2011. Also, the t-statistics of DAX monomials of large
degree are extremely significant (—2.7 for the coefficient of DAX*, 5.6 for
DAX?®). We would have to reject the non-measurability property in this
case which is surprising. Still, the reason for this can be found in the week
after the earthquake. The earthquake itself occurred on a Friday whereas
the Moratorium and its consequent rise in forward prices was the Monday
and Tuesday thereafter. Prices decreased to some extend during the week as
market participants realised more clearly the consequences for the German
electricity market. For example the price of the May 2011 forward was
50.88 Euro on Friday, it jumped to 61.95 on Tuesday and settled to a level
around 58.00 Euro by the end of that week. Exactly the opposite took
place on the stock exchange. On Friday, the DAX was at 6981 points. The
stock exchange closed for the weekend and when it reopened on Monday
and Tuesday traders had a first impression of the long-term damages and
their impact on the Japanese economy - the DAX fell by more than 400 (i.e.
5.7%) to 6513 points. Less than two weeks later the DAX had regained all
losses. The extreme losses/gains and increases/descreases respectively are
responsible for the high R? and the significance of the result.

e=First Differences of Residual Regression Line (degree five polynomials of DAX differences) )

-3,00
01.12.2010 01.01.2011 01.02.2011 01.03.2011 01.04.2011 01.05.2011

Figure 14: May 2011 residuals vs regression line. With respect to DAX polynomials
of degree five. Including 15/03/2011.

This is further illustrated by Figure and Figure [15) which show the
resulting regression function for polynomials of the DAX residuals up to
degree five. Figure shows that the regression line is almost constant

zero but fits very well the Tuesday after the earthquake. The least-squares
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e==First differences without Tuesday 15.03.2011 Regression Line (degree five polynomials of DAX) without Tuesday 15.03.2011
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Figure 15: May 2011 residuals vs regression line. With respect to DAX polynomials
of degree five. Not including 15/03/2011.

method then produces a high R? of 56% due to this outlier. This result
will be even clearer with monomials of higher degree: the line is even more
constant and all parameters will be very close to but not significantly zero.
On the other hand, replacing the value of Tuesday 15/03/2011 with zero
and repeating the regression yields a R? of only 4% (graphs in Figure
as well as insignificant zero coefficients. Hence, by deleting the crucial date
of this data set we have reduced the R? by more than 50%, i.e. one could
then claim the non-measurability property again.

4.4.2. Robustness of test and simulation study

As mentioned in the previous section it remains to check whether our
test is able to reject the existence of an information premium if there is
none. Therefore, we will conduct a simulation study.

We will assume the spot price evolves according to a standard Gaussian
Ornstein-Uhlenbeck process with constant parameters

dSt = Oé(,u — St)dt + O'thl (44)

where W} is a standard Brownian motion. We define another process Z!
by

dZ) = —an Z dt + o pdW/ (45)
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where W7 " is again a Brownian motion which is independent of Wl Let W2
be yet another Brownian motion and let dW}!dW}? = pdt be the correlation
coefficient. Then we define the process Z?2 by

dZ? = —apZ2dt + o72dW}E (46)
Now, we construct the forward price as follows
F(t) = p+pZ + p 2} (47)

where py, p2 € [0, 1] are constants.

The motivation behind this construction is as follows: we have seen
before that due to the large rate of mean reversion calculated forward prices
tend to be almost constant in terms of ¢. This is why we choose constant
i to be the first building block of the forward price. We note that with a
constant change of measure this value is not very important. Both processes
Z} and Z? are OU processes around zero and resemble the random shocks
in the forward price. Z/ is independent of S; and may be interpreted as
part of the information premium or some other non-measurable deviations.
Z2 on the other hand is an OU process induced by the spot price depending
on p.

Depending on the parameters but in particular on the choice of p, p, po
we expect to see similar regression results as before but also clear rejec-
tions of the existence of information premia. We will repeat all simulation
experiments 200 times and compare mean statistics. Also, we will use the
polynomial basis of degree ten again.

We choose OU parameters similar to those extracted from market data
or which make sense economically, respectively. We set &« = 0.5 and o = 5.0.
Furthermore, we set az2 = 0.3 and 072 = 3.0 as we expect forward prices to
be less volatile. For now, we also let p; = 0, p; = 0.5 so that the random in-
novations of the forward do not include non-measurable disturbances. Mean
R?s for some values of p are illustrated in Table

Table 14: Simulation results (R?) for different p and p; =0

p |1 08 05 0
R’ 094 062 027 0.05
R? (1st diff.) | 0.98  0.65 028  0.05

As expected with this simplified setup regressing the forward on the

spot polynomial yields high R?s for high coefficients of correlation with
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a near-zero R? for zero correlation. Using first differences yields slightly
higher R?s. Examining the values of the coefficients as well as the t-stats
of the pure regression we find that for non-zero p many coefficients take
extremely large absolute values whereas none of the t-stats are significant.
For first differences on the other hand only the value of the coefficient of
Sy is significantly different from zero (as indeed expected by construction).
All F-statistics except those for a zero p reject zero coefficients.

We will now introduce independent random shocks by setting p; = 0.5
and we let azi = 0.3 and oz = 3.0 (for comparability). Repeating the
experiments from above we get the results as summarised in Table [I5]

Table 15: Simulation results (R?) for different p and p; = ps = 0.5

p |1 08 05 0
R® 049 034 016 0.05
R? (Ist diff.) | 0.51 035  0.17  0.05

In order to classify the results of the previous sections we are now going
to consider a series of experiments in which we will assume p = 1.0 and
modify the value of p, ceteris paribus. The question we would like to answer
by conducting this experiment is, what type of setup would yield results of
the same quality as in Section [4.2] and Section [4.3] Table provides the
facts and figures.

Table 16: Simulation results (R?) for different p = 1, p; = 0.5 and different py

P | 0 01 025 05 10
R? 005 0.09 022 049 0.76
R? (1st diff.) | 0.05 0.08 023 051 0.79

For example, remembering the forward with delivery in January 2008
our regression (with stationary first differences) had an R? of 0.07. Roughly
speaking, looking at Table this would correspond to the situation in
which "one sixth” of variations in the residual were induced by the spot
whereas the rest was induced by some non-measurable other source which
seems realistic for our hypothesised information premium around that time.
A similar picture can be drawn for p # 1 by looking at Table [I5]

Summarising, by a simple set up and a simulation experiment as con-
ducted in this section we have shown two things: firstly, we can replicate

the results from previous sections, in particular from the Japan earthquake
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and consequent ”Atom Moratorium” as well as from the introduction of
C'O, certificates in 2008. Secondly, we showed that we can construct non-
trivial scenarios for which the hypothesis of zero regression coefficients is
rejected. Consequently our test would reject the existence of an information
premium.

4.4.8. Concluding remarks

Here are some last remarks considering the method we propose in this
paper:

The regression method used to show the non-measurability of the resid-
ual works with any orthonormal system whereas we only consider the poly-
nomial basis. Some research has been done as to the benefits of using
different bases in the case of the classical Least-Squares-Monte-Carlo. For
example, this is discussed in section 8.3 of |Longstaff and Schwartz (2001]).
Still, in our case this choice is more or less irrelevant. After all, we are only
interested in the significance properties and not in the speed of convergence
of the algorithm. There is a bijection between different orthonormal sys-
tems and by making use of a sufficient number of basis elements we can
constrain ourself to this choice. We have mostly used ten basis elements in
this paper and claim that this is more than enough (even more, for a data
set of length 640). Indeed, increasing the number of basis elements does not
alter the result.

Furthermore, one could postulate that our findings are maybe due to
initially fitting the spot price badly or a bad spot model in general. Still,
we used observed data for our spot and forward time series. The only objects
depending on the spot model were the expectations taken under Q and F;.
But these expectations which were subtracted from observed data to isolate
the information premium were piecewise constant (remember Figure 8 and
the reasoning in Section [3). Hence, we claim that the regression results
would not be altered for a different spot model.

5. Conclusion

This paper provided a thorough empirical analysis of the information
premium and showed that the premium exists on electricity markets.
These markets exhibit future information priced into forward but not
incorporated in spot prices. In Financial Mathematics the flow of infor-
mation is modelled by filtrations. Still, scientific literature has only con-
sidered the historical filtration and thus the classical but non-appropriate
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spot-forward relationship. To understand the relationship between spot and
forward prices on electricity markets, and thus their fundamental structure,
we find it necessary to take larger filtrations into consideration. Thus, we
complement the notion of the well-known risk premium by the notion of an
information premium. The information premium is consequently defined to
be the difference between the forward price under a large (market) filtration
and a small (historical) filtration. Benth and Meyer-Brandis| (2009) found
some fundamental properties of the information premium and calculated
it for a two-factor arithmetic model making good use of the theory of the
Enlargement of Filtrations.

We designed a new method in order to show the existence of the informa-
tion premium empirically. To this goal we conducted a measure change and
isolated a residual from observed forward prices. We had to test this residual
for the premium’s most important property: the non-measurability under
the historical filtration. This was done by trying to express the residual
in terms of an orthonormal basis of the spot price by means of regression.
To the best of our knowledge there is no other literature that discusses
non-measurability empirically.

We applied our test to the data of two motivating examples. The first
of these examples was the beginning of the second phase of C'O; certificates
on the EEX in 2008. The market expected a steep rise in electricity prices
which was observable in forward prices even before 2008 - but not in spot
prices. The second example featured the German ” Atom Moratorium?”, i.e.
the shut-down of seven older nuclear power plants. This piece of legislation
was introduced to reevaluate German policy after the Fukushima disas-
ter. It resulted in increased forward prices while the spot price remained
unchanged. For both examples the test confirmed the existence of a sig-
nificant information premium and the residual was plausible with respect
both, size and shape.
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Appendices

Appendix A. The Lévy part of the Spot model

The Lévy process L; contributing to the spot model follows the Kou
model |Kou (2002). It is a compound Poisson process with double-exponentially
distributed jumps.

Definition Appendix A.1l. Lévy Component. Define

Ny
L = Z D,
=1

where Ny 1s a Poisson process with intensity X\ > 0 and D; are the indepen-
dent, identically double-exponentially distributed jump sizes with the density
of the double-exponential distribution given by

fo(@) = pme” ™ Lozo + gmae” ™1 1,<
where p4+q =1 and 1y, n2 > 0.
To calculate expectations we use the following result:

Lemma Appendix A.1. Log-moment generating function. The log-
moment generating function of Ly is given by

—A A
pu i qu

w) = logEle*l] = ,
¢L1() g [ ] u—m u— 15

(A.1)

so that
Ap Mg
E(Ly) = ¢7 (0) = — — —
(L1) = ¢1,(0) e
For the application of the Esscher transform we need the following;:
Lemma Appendix A.2. Integrability condition. We can apply Ess-
cher transform to L; if

/|>1 e ju(dr) < oo (A.2)

1s satisfied. Here, p denotes the density and 6 the Esscher transform pa-

rameter.
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The following lemma ensures the integrability condition for the Esscher
transform is satisfied by our choice of the Lévy process (given constant 6;):

Lemma Appendix A.3. Kou model and integrability condition.
The compound Poisson process with doubly exponentially distributed jump

heights satisfies the integrability condition (A.2)) for the Esscher transform
for 0, < nmy and 0, > —ns because

1 00
/ e pu(dx) :/ eO“Aqnge"2|xdx+/ P \prre M dx
lz|>1 —00 1

-1 o0
= g2 / e ) o 4 Apmy / ef=me dy
- 1

_ AR e AP gy,
0 + o 0—m
< 0

Appendix B. Forward prices with delivery period

We use the following deterministic functions to calculate forward prices
(using the same notation as Benth et al.| (2008a)):

- _1 e—a(Tg—t) _ e—oc(Tl—t) t<T
a(t,Th,Ty) = { _ Ee—am—t) ~1) ) t> Ti (B-1)
_ _l (e_ﬁ(TQ_t) — e_ﬁ(Tl_t)) t S T].
5(t7Tla TQ) = { _i (675(7’24) - 1) t > Tl (B2)
B
R L -1+ 1 (e—ﬂ(Tz—t) _ e—ﬂ(Tl—t))) t < T
_ 8 ( 2 1 B = 11
B(taTla TQ) { % (T2 —t + % (67,3(T27t) . 1)) t> Tl (B?))

This is the proof for the explicit expression of the forward price under
measure Q for delivery between 17 and T5:

Proof of Proposition[2.4. The first three terms of the statement are easily

45



calculated. Further, considering the Lévy part yields

E2 { /T T /t ' e‘ﬁ(“‘s)dLsdu}
[ o
/ exp( / d(01,(s))ds EP{ e PU=9)dL, exp ( /tUQL(s)dLS)}du
e[ e

< (exp (bg (E {exp ( / " (e 4, (s)) dL)D))

where we added an artificial differentiation. This allows to further calculate

-/ T exp (— / ucb(eL(s))ds) ¢ (exp ( / (6 (e ) 1 0, (5)) ds)))
_ /T T exp (— /t u¢(9L(S))ds)

([ e (ae s st dsexo ([0 (a0 4 106 s

_ / exp( [ otwonas) ([ erens oy asess ([0 as) ) o

= ¢ (0.(s)) B(s, T1, T»)ds

t

du

=0

du

=0

N————

A similar approach provides the result for the Gaussian part. After collect-
ing terms the proposition is proved. O]

The following corollary provides the forward price under P as a special
case of proposition [2.2]

Corollary Appendix B.1. Forward price under P. The forward price
with delivery under the historical measure P is given by

1
F(t7TI7T2):T T (
2 11

Here, 0 <t <Ty <T5.

Ty

T> ~
/ A(u)du + a(t, Ty, To) X, + B(t, Ty, To)Y; + ¢/ (0)5(t, Tt TQ))
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Appendix C. The Seasonality Function

In the empirical analysis we used the following seasonality function A(t):

A(t) = bo + byt + by cos(Z=t) + by sin(2=t) + by cos(E5t) + b sin(Z5t)

+ 061t mod 7=0} (£) + 0714t moa 7=13(t) + ... + D121t moa 76} (t)

The fitted values for the Emissions dataset were:

Table C.17: Emissions dataset Fitted values of A(t)-parameters

bo b1 by bs by bs be bz bs by bio b bio

20.11 0.09 3.61 -0.95 -235 —-048 6.04 320 —-6.79 —-16.53 3.50 4.91 5.66

The fitted values for the Moratorium dataset were:

Table C.18: Moratorium dataset Fitted values of A(¢)-parameters
bO bl b2 b3 b4 b5 b6 b? b8 b9 blO bll 612
3793 0.02 —-094 149 —-1.06 1.33 3.50 3.28 266 143 —4.28 —847 1.88
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Appendix D. Regression Tables

Table D.19: January 2008 Forward Regression Afg(t,Tl,Tg) = Zf\il Na;Si+ €

Value Std. Dev. t-value p-value
Intercept | 0.09  0.16 0.55 0.58
S -0.01  0.03 -0.33 0.74
S? 0.00  0.00 -0.66 0.51
S3 0.00  0.00 0.22 0.83
St 0.00  0.00 0.49 0.62
S5 0.00  0.00 -0.15 0.88
S6 0.00  0.00 -0.26 0.79
S7 0.00  0.00 0.07 0.95
S8 0.00  0.00 -0.05 0.96
SO 0.00  0.00 -0.01 0.99
S10 0.00  0.00 0.12 0.91

Table D.20: May 2011 Forward Regression Afg(t, T, Ts) = ag + Zj\[:l ajASI{ + €

Value Std. Dev. t-value p-value
Intercept | 0.20  0.17 1.14 0.25
S 0.13  0.13 1.03 0.31
S? -0.03  0.04 -0.90 0.37
S3 -0.01  0.02 -0.64 0.52
S 0.00  0.00 0.84 0.40
S5 0.00  0.00 0.25 0.80
S6 0.00  0.00 -0.70 0.48
S7 0.00  0.00 -0.06 0.95
S8 0.00  0.00 0.49 0.63
S9 0.00  0.00 -0.03 0.98
S0 0.00  0.00 -0.31 0.76
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