

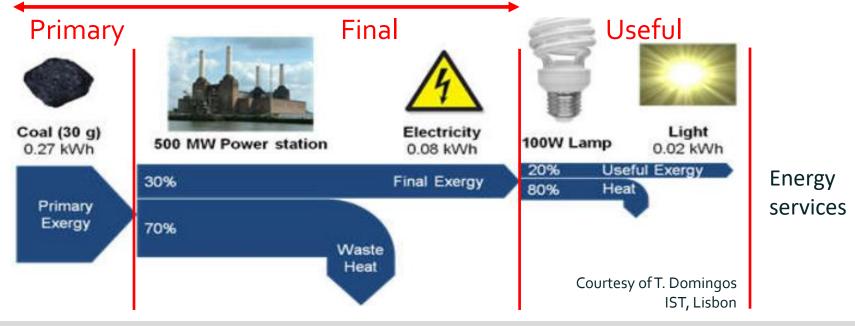
Assessing the socio-macroeconomic impacts of the EV transition: UK case study 2020-2050

Jaime Nieto, Paul Brockway, Marco Sakai, John Barrett,

20 SEPT 2023

British Institute of Energy Economics (BIEE) Conference, Oxford

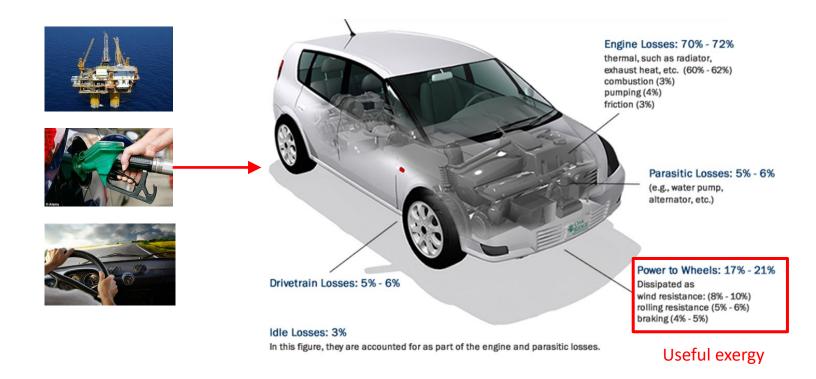
- 1. From primary to useful energy
- 2. MARCO-UK: modelling at the useful stage
- 3. The EV transition: scenarios and results
- 4. Discussion



1. From primary to useful energy

Alternative 'exergy analysis'

Traditional 'energy analysis'



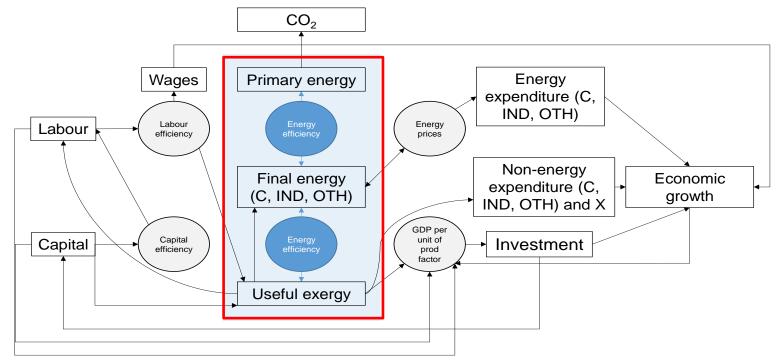
MATERIALS & PRODUC

CR

1. From primary to useful energy

www.creds.ac.uk

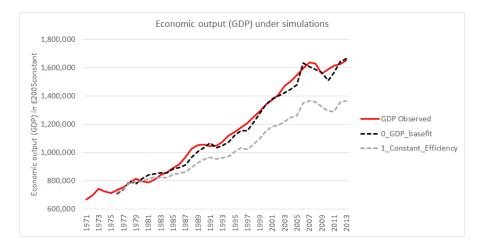
MATERIALS & PRODUCTS

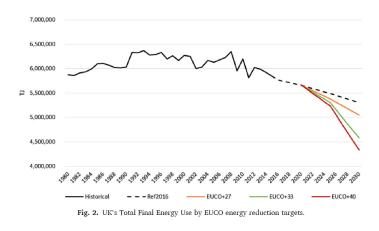

CR

DS

CR

2. MARCO-UK: modelling at the useful stage


Source: Sakai et al. (2019)



2. Some outputs from MARCO-UK model

• Energy efficiency gains explain 25% of UK economic growth (close match to TFP)

 Largest socioeconomic benefits (+jobs, +GDP) from tightest energy target

Source: Nieto et al (2021)

Source: Sakai et al (2019)

3. The EV transition – happening now (at least in our house)

3. The EV transition: Input scenarios

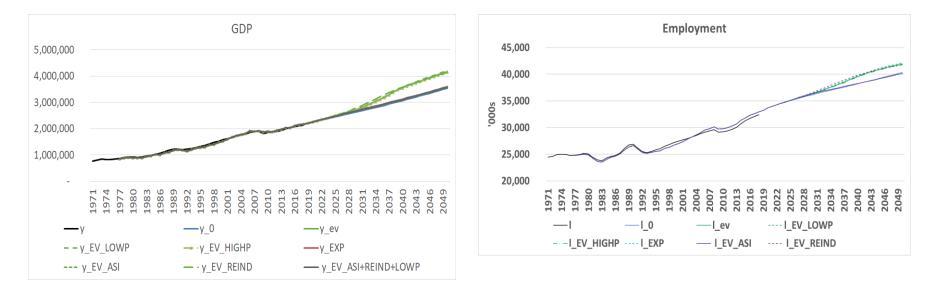
KEY	Electrification of transport			Efficiency of Transport increased		Rebound limits		Additional Expenditure				toral inge			
NOT APPLIED / BASELINE	APPLIED / LOWER		Electricity share in transport (%)		Oil products share in transport (%)		Final to useful efficiency in the Transport sector (%)		Maximum increase in energy services over Baseline (%)		Increase over the Baseline's Corrited		Variation	Share of Transport Equipment sector over	
APPLIED / MEDIUM	APPLIED / HIGHER										Capital Investment in year "t" (million GBP/year)	Households' Consumptio n (million GBP/year)	from Base Year (2018=100)	GDP (%)	
Scenario		Code	Base Year	2050	Base Year	2050	Base Year	2050	Base Year	2050	Average (All period)	Average (All period)	2050	Base Year	2050
Baseline	1 a	_0	1.1	1.1	94.8	94.8	28.9	Endog	-		-	-	100	1.56	
Additional Expenditure	1b	exp 075* _exp exp175*	1.1	1.1	94.8	94.8	28.9	Endog	-	- + 5,817 + 6,813 +7.810		+ 7,816	100	1.56	
EV	2b 2a	EV unlim * _EV EV ASI	1.1	90	94.8	5	28.9	65.5	0	29 0	+ 6,813	+ 7,816	100	1.56	
Electricity Prices	2c 2d	EV lowp EV highp	1.1	90	94.8	5	28.9	65.5	0 29		+ 6,813	+ 7,816	75 130	1.56	
Reindustrialise	2e	EV_reind	1.1	90	94.8	5	28.9	65.5	0	29	+ 6,813	+ 7,816	100	1.56	2.22

3. The EV transition: Input scenarios

KEY	Electrification of transport			Efficiency of Transport increased		Rebound limits		Additional Expenditure		Electricity Secto Prices chan					
NOT APPLIED / BASELINE	APPLIED / LOWER		share in sha transport trans		Oil pro share		Final to useful efficiency in		Maximum increase in		Increase over the Baseline's	Increase over the Baseline's	Variation from Base	Share of Transport Equipment sector over	
APPLIED / MEDIUM	APPLIED / HIGHER				transport (%)		the Transport sector (%)		energy services over Baseline (%)		Capital Investment in year "t" (million GBP/year)	Households' Consumptio n (million GBP/year)	Year (2018=100)	GDP (%)	
Scenario Code		Base Year	2050	Base Year	2050	Base Year	2050	Base Year	2050	Average (All period)	Average (All period)	2050	Base Year	2050	
Baseline	1a	_0	1.1	1.1	94.8	94.8	28.9	Endog	-	-	-	-	100	1.56	
Additional Expenditure	1b	exp 075* _ <u>exp</u> _exp175*	1.1	1.1	94.8	94.8	28.9	Endog	-	-	+ 5,817 + 6,813 +7,810	+ 7,816	100	1.56	
EV	2b 2a	EV unlim * _EV EV ASI	1.1	90	94.8	5	28.9	65.5	0	29 0	+ 6,813	+ 7,816	100	1.56	
Electricity Prices	2c 2d	EV lowp EV highp	1.1	90	94.8	5	28.9	65.5	0	29	+ 6,813	+ 7,816	75 130	1.56	
Reindustrialise	2e	EV_reind	1.1	90	94.8	5	28.9	65.5	0	29	+ 6,813	+ 7,816	100	1.56	2.22

C R 📵 D S

MATERIALS & PRODUCTS

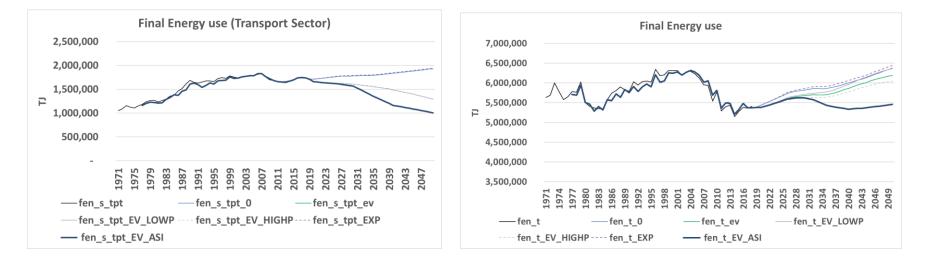

3. The EV transition: scenarios and results

GDP: difference versus (CAAGR 1.7%) baseline in 2050:

- ASI EV scenario: 1.6% higher (+£60Bn)
- All other EV scenarios: 17-20% higher (+£650Bn) 2.1%CAAGR

Employment: versus baseline

- ASI EV scenario: 40,000 average extra jobs 2020-2050
- All other EV scenarios : 1Mn average extra jobs 2020-2050


3. The EV transition: scenarios and results

transport: reductions in final energy in 2050 (vs ICE baseline)

- 48% reduction in the ASI EV scenario (zero direct rebound)
- 33% reduction in other EV scenarios (29% direct rebound)

Total energy: reductions in final energy in 2050 (vs ICE baseline)

- 15% reduction in the ASI EV scenario (zero direct rebound)
- 0-5% reduction in other EV scenarios (55-98% total rebound)

4. Discussion

1. Economic system changes only have <u>small</u> impacts:

Capital investment (£11Bn) stimulates only a small GDP impact and jobs, as expected

Energy prices: only have a small impact on the results (lower prices reinforce rebound effects)

2. Energy system changes from the EV transition causes large changes on the energy-economic system

Non-ASI scenarios: Up to 20% increase (+£650Bn/yr) in GDP in 2050 and 1M extra jobs above baseline

ASI scenario: Up to 50% reduction in transport final energy and 15% overall final energy reduction versus baselines

- > both effects do <u>not</u> occur simultaneously
- 3. Energy rebound effects can be significant:

direct rebound 12% short term and 29% long term included

overall / total rebound of 75% for central EV scenario

4. The ASI scenario: finds an "equilibrium" is possible, to realise energy savings and not harm the economy, through economics: keeping an eye on prices, deciding whether to produce or import,

energy demand management: policies to control rebound, so most of the efficiency gains go to reduced final energy

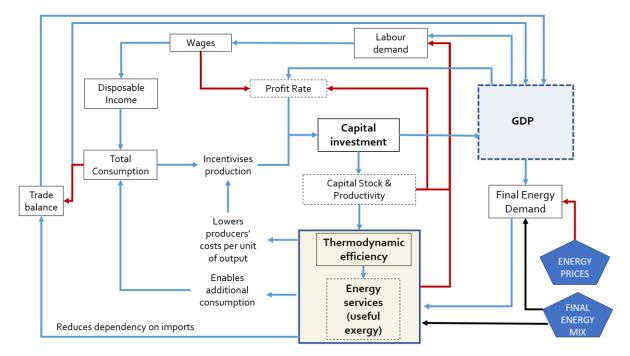
Nieto J., Pollitt H., Brockway P.E., Clements L., Sakai M., Barrett J. (2021) Socio-macroeconomic impacts of implementing different post-Brexit UK energy reduction targets to 2030. Energy Policy, 158, 112556. Available at: <u>https://doi.org/10.1016/j.enpol.2021.112556</u>

Nieto, J., Brockway, P. and Barrett, J. (2020) Socio-macroeconomic impacts of meeting new build and retrofit UK building energy targets to 2030: a MARCO-UK modelling study. Sustainability Research Institute (SRI) Working Paper No. 121. Available at: <u>https://sri-working-papers.leeds.ac.uk/wp-content/uploads/sites/67/2020/01/SRIPs-121.pdf</u>

Nieto J., Brockway, P.E., Barrett J. (2020) Widespread benefits of rapid UK building retrofit. Blog post available at <u>https://www.creds.ac.uk/widespread-benefits-of-rapid-uk-building-retrofit/</u>

Sakai, M.; Brockway, P.E.; Barrett, J.R.; Taylor, P.G. (2019) Thermodynamic Efficiency Gains and their Role as a Key 'Engine of Economic Growth'. Energies 2019, 12, 110. Available at <u>https://doi.org/10.3390/en12010110</u>

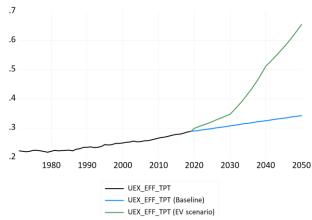
Contact details: Paul Brockway: p.e.brockway@leeds.ac.uk



BACK UP / ADDITIONAL SLIDES

MARCO-UK: modelling at the useful stage

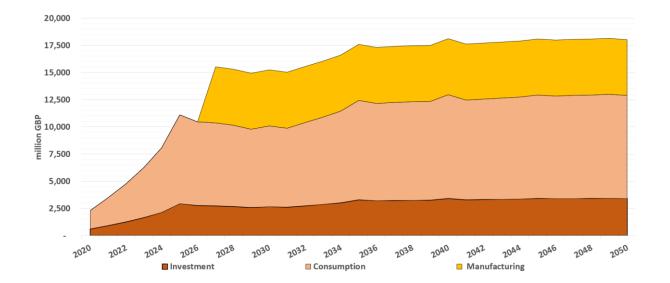
Source: Based on Nieto et al. (2021)



The EV transition: Input scenarios

1.0. SHARE FEN TPT BIOWASTE 0.8 .7 ---- SHARE FEN TPT BIOWASTE (EV scenario) SHARE_FEN_TPT_COAL .6 0.6 ---- SHARE_FEN_TPT_COAL (EV scenario) SHARE FEN TPT ELEC .5 ----- SHARE_FEN_TPT_ELEC (EV scenario) 0.4 SHARE_FEN_TPT_NG ---- SHARE_FEN_TPT_NG (EV scenario) 0.2 .3 ---- SHARE FEN TPT OIL (EV scenario) 0.0 1980 1990 2000 2010 2020 2030 2040 2050

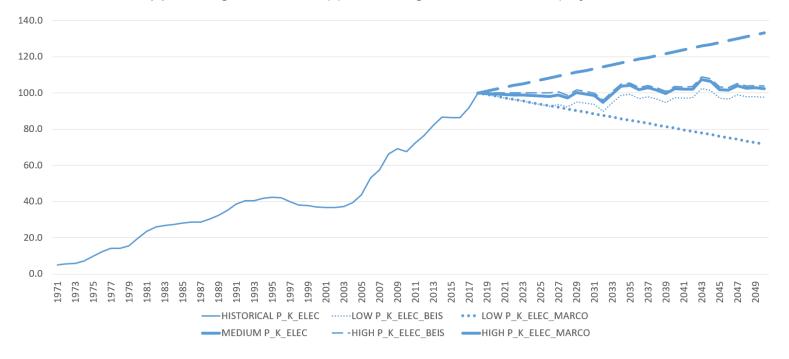
Transport efficiency: EV scenarios 70% efficiency in 2050 = twice ICE efficiency (35%)



Fuel shares: switch in EV scenarios to 90% electricity

The EV transition: Input scenarios

Investment: split between firms and households



The EV transition: Input scenarios

Electricity prices: high/low electricity prices are higher/lower than BEIS projections

