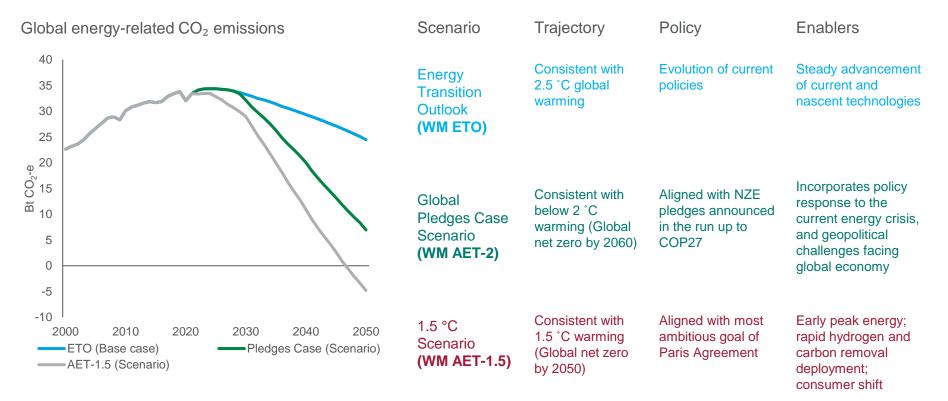
BIEE webinar

Future of industry: Green, connected and circular

Prakash Sharma | 24th May 2023

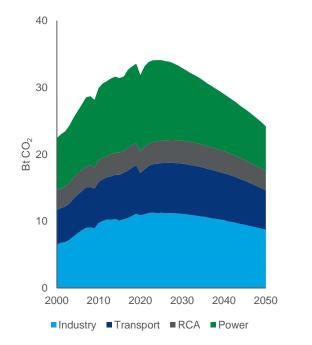


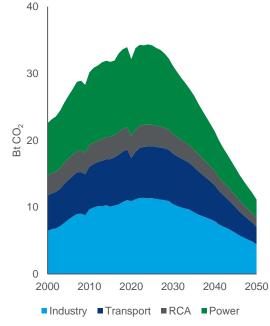
Contents

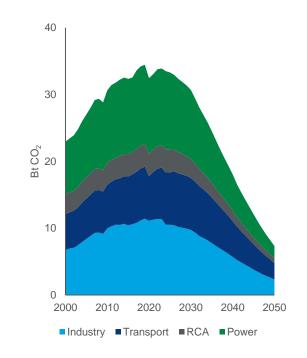
1.	Introducing energy transition scenarios	2
2.	Industries as we know today	8
3.	Role of new technologies in industrial decarbonisation	

Three radically different views are emerging in the world of energy and resources

The world needs to reach net zero before 2050 to meet the most ambitious goals of the Paris Agreement

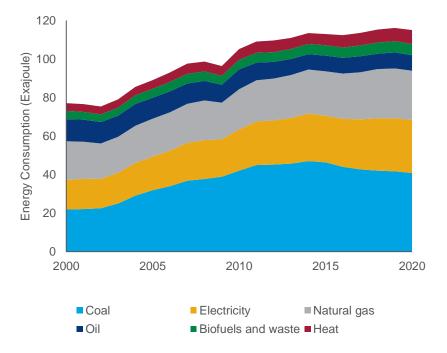

Emissions fall across sectors


Electrification is the primary tool adopted by countries to deliver reductions


ETO emissions by sector

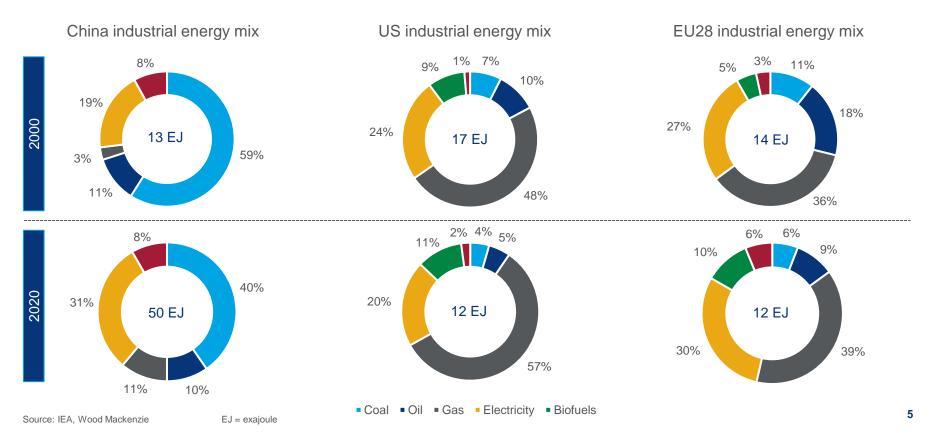
AET-2 emissions by sector

AET-1.5 emissions by sector


Rapid industrialisation in developing countries contributed to energy demand growth between 2000 and 2020

However, environmental concerns and economic maturity dampened energy demand in developed countries

Sub-sector trends

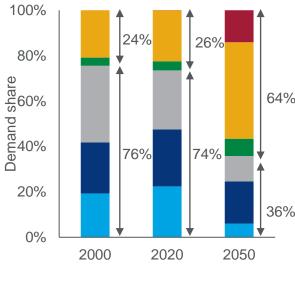


Fuel-mix trends

Policy support and resource availability drove fuel choices

China's rise in global industry and manufacturing has increased the overall use of coal despite declining usage in OECD markets

No one-size-fits-all solution exists for industrial energy and emissions


Heat recovery and secondary material usage are the most immediate and practical interventions while breakthrough technologies reach scale and commerciality

Themes	Process		efficiency Emissions ab		sions abatement opt	s abatement options		Circular materials	
Intervention	Temp. heat requirement	Heat recovery	Alternative production pathway	Electrification	Carbon capture	Green hydrogen	Secondary materials	Biobased feedstock	
Iron and steel	Up to 2200 °C	• Tail gas recovery Feed preheating	DRI-EAF commercial LTE & MOE in R&D	Possible electrolytic primary production BOF and EAF already electrified	Moderate cost, but displaced by H2	Replaces fossil-based reducing agent	Already highly recycled	Not applicable	
Nonferrous metals	Up to 1000 °C	Low quality heat ew output options	Electrolytic process improvements Other pathways in R&D	Already electrified	Low process gas CO ₂ concentration	Not applicable	Already highly recycled	Not applicable	
Cement	Up to 1450 °C	Modern plants already efficient	No breakthrough technology	High temp heat requirement	 High concentration low capture cost 	Blend or displace natural gas	BF-slag and fly ash displace clinker	Not applicable	
Pulp and paper	Less than 200 °C	Efficient plants can run CHP, export excess power	No breakthrough technology	Mechanical electrified; Chemical expensive compared to black liquor	Moderate capture cost	Energy source either electricity or black liquor	Moderately recycled, regional challenges	Sustainable forestry practices	
Chemicals	300-800 °C Varies by product	Iterative efficiency improvements	Varies by product	🥖 Varies by product	Varies, but high potential for some chemicals	Ammonia and methanol production	Plastic recycling faces economic and technical Challenges	Economic challenges	
Oil refinery	Up to 500 °C	Iterative efficiency improvements	No viable alternative to distillation	Difficult to displace refinery byproducts	Capture from hydrogen plant	Difficult to displace refinery byproducts	 Produced through pyrolysis, small quantities 	Economic challenges	

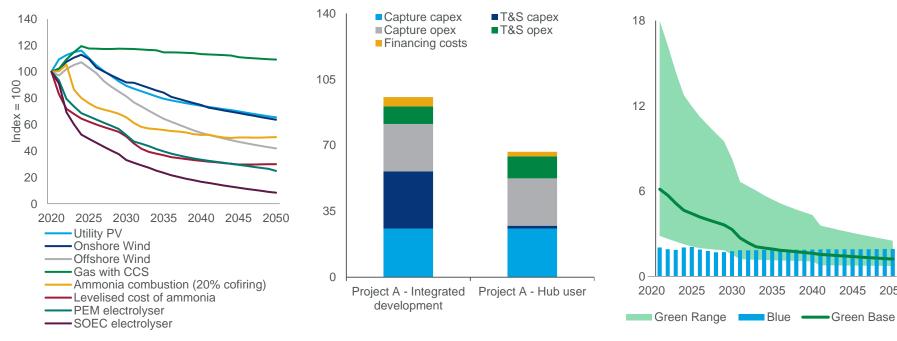
Electrification, low carbon hydrogen and biofuels will be needed to decarbonise industry

But for some sub-sectors, CCUS will be the only viable decarbonisation option

Share of industrial demand by fuel

Decarbonisation options for the selected industrial sub-sectors

				Low-carbon fuel
	Oil and gas production	Oil/gas for onsite power generation	Renewable generation	Electricity
%	Steel	Coal in blast furnaces	Electric arc furnaces, Green Steel; CCUS; biomass	Electricity Low carbon hydrogen
	Refining	Hydrogen from fossil fuels; Oil/gas for onsite power generation	Green or blue hydrogen; renewable generation; CCUS	Electricity Low carbon hydrogen
	Petrochemicals	Hydrogen from fossil fuels; Oil/gas for onsite power generation	Green or blue hydrogen; renewable generation; CCUS	Electricity Low carbon hydrogen
6	Construction	Oil products used for onsite power generation and construction vehicles	Onsite renewable generation; electrified / hydrogen fuel cells construction vehicles	Electricity Low carbon hydrogen
	Non-metallic minerals (e.g., cement)	Fossil fuels used to heat kilns; CO ₂ emitted in calcination process	Use of biomass in kilns; CCUS	Biofuels Low carbon hydrogen
	Manufacturing	Oil/gas for heating and drying processes	Electrified processes; high temperature heat pumps	Electricity


The economic fundamentals for decarbonisation are in place

Costs declines for low carbon technologies are a structural trend

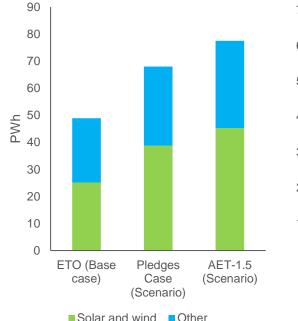
Cost trajectory of key technologies

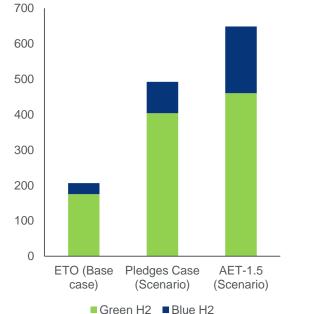
Levelised cost of CCUS, US\$/t

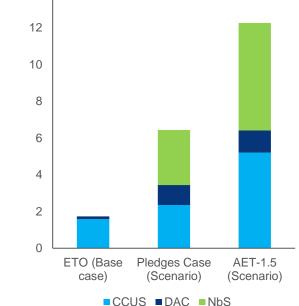
Levelised cost of hydrogen (global average), US\$/t

205(

Renewables, hydrogen and carbon removal technologies are deployed at scale


Wood Mackenzie's pledges scenario vs ETO (base case) and AET-1.5 (scenario) in 2050


Electricity output, PWh


Low-carbon hydrogen, Mt

Carbon removal, Bt CO₂

14

CCUS includes carbon capture in blue H2 production NbS = Nature based solutions

Europe	+44 131 243 4477
Americas	+1 713 470 1700
Asia Pacific	+65 6518 0888
Email	contactus@woodmac.com
Nebsite	www.woodmac.com

Wood Mackenzie[™] is a trusted intelligence provider, empowering decision-makers with unique insight on the world's natural resources. We are a leading research and consultancy business for the global energy, power and renewables, subsurface, chemicals, and metals and mining industries. For more information visit: woodmac.com

WOOD MACKENZIE is a trademark of Wood Mackenzie Limited and is the subject of trademark registrations and/or applications in the European Community, the USA and other countries around the world.

